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The first-passage-time distribution function (FPTDF) is derived for a relativistic random walk (RW) in
one-dimensional (1D) space limited by one boundary. Thereby two configurations are considered with
the start of the RW directed towards or away from the boundary. For each configuration the distribu-
tion function (DF) of the RW path ends is evaluated subjected to either absorption or reflection occur-
ring at the boundary. The DF’s are identical with the solutions of the telegrapher equation in 1D space
under the same initial and boundary conditions. The calculus can be extended to two boundaries, where
all combinations of reflecting and absorbing boundaries are possible, for which the Laplace transforms of
the path-end DF’s and the FPTDF’s are presented. The derivation is demonstrated and cross-checked

for the case of two absorbing boundaries.

PACS number(s): 02.50.—r, 03.40.Kf, 05.40.+j

I. INTRODUCTION

The solution of a partial differential equation in a finite
medium requires the knowledge of the boundary values
(BV’s). 'As they are a part of the time-dependent solution,
their time dependence must be known a priori, which is
not the case for absorbing or reflecting boundaries. On
the other hand, known stationary boundary conditions
prove in most cases insufficient to solve the time-
dependent problem. General aspects of the problem can
be found in [1-3] and a survey is presented in [4], but
only a few publications refer to the telegrapher equation
(TE) [5,6] in one-dimensional (1D) space with absorbing
boundaries, and symmetric initial conditions.

Here we present solutions of the TE in 1D space as
well, but with a variety of one or two absorbing and/or
reflecting boundaries for one-sided sources, from which
all presently known solutions can be derived. Actually
the solutions are obtained from a random walk (RW)
model that allows the distinction of two directional com-
ponents, which is not the case for the TE and its known
solutions [7,8]: A particle moves with constant speed
along the spatial coordinate x, where it reverses its flight
direction at randomly distributed instants. The oc-
currence of these flips, equivalent to backscattering

J

events in the RW executed by the particle, is assumed to
be Poisson distributed with the rate r (constant in time
and space). The time-dependent distribution function
(DF) of the path ends of the RW is identical with the
known solution of the TE, naturally under the same ini-
tial and boundary conditions, i.e., for a point source emit-
ting a source current of half the source strength in either
x direction and for boundaries at x =1 o. From this
identity we conclude that the unknown solutions of the
TE subjected to different initial and/or boundary condi-
tions can be obtained likewise by the RW model, which
entails that the first-passage-time distribution functions
(FPTDF’s) of the RW ought to be identical with the
time-dependent BV’s of the TE.
The TE with the reduced space coordinate g =x /c,

£(t,q)=0, (1)

is solved for a uniform medium with infinite extension
and with a point source at t =¢ =0 that emits a current
of unit strength equivalent to one particle in the positive
q direction. The solution describes the flux (particle den-
sity times velocity) by a probability density function
(PDF) [8]:

/tg)=e "0 (8"t —q)+ 7 |I5 (6)+ ;—f—g I7 () 6(t—|q|)] with 6=r(12—q?)1"2 (2a)
=/Tot)+ 3 £ Tk +106@) L5 2 12(8,9)] (2b)
k=0

=/1t,q)+/L7(tq) .

(2¢c)

©O(2) and 8(¢ F q) have the usual meanings, I, is the modified Bessel function of order k, r is the scattering rate, and the
subscripts & indicate the orientation of the source current in g space. The constant particle speed limits the flux PDF

to the interval —¢ <q <t¢.

The same distribution is obtained for the path ends of a one-particle RW starting in the positive g direction, but it is
only the latter that allows one to relate the three terms in (2a) to a free-flight term and contributions from an odd and
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an even number of reversals, as described by (2b). Actually if we expand both Bessel functions into series, then the nth-
order term in the overall sum (2b) represents the path-end DF of a path with »n flips. Consequently a given starting
direction, corresponding to a one-sided orientation of a one-particle source, makes it possible to attribute to any term of
order n a flight direction, consequently two flight directions can be distinguished in the path-end PDF as indicated by
the superscripts * in (2c).

Associated with these flight directions are two DF’s for one-sided currents, one for a positive and one for a negative
current component (PCC, NCC) [9]. Recalling the Poisson distribution of the scattering events, the time and space in-
tervals between the flips form a renewal process and the process is stationary. Consequently the path-end PDF (2) can
be interpreted as a transition probability (TP) expressed in terms of differences in time and space. And further we
deduce from (2c) that / i(t,q) and /7 (t,q) are TP’s as well, with the current orientation additionally taken into ac-

count. Marking all currents or current components with their superscript, (2c) can be extended to its general form

+ ’ +oo vyttt Y )= L to ryt(4r + 40 ) — Y )
fo dt f+wdqQ (t',q")/ (t—t',q—q") fodt f+wdqQ (gLt —t,g—qg)+LTt—t'g—q)], (2d)

where Q T(t,q) denotes the DF of a positive current and
where (2d) reduces to (2c) by setting Q*(t,q)
=178(2)8(q).

Reading the notations in (2d) from left to right the
transition of any initial state, given by the DF of a
current directed towards g >0 (being either a one-sided
current, or a current component alone, or the non-
negative difference PCC minus NCC, see [9]) can be
tracked down to the final or follow-up state, given by the
DPF’s of two current components in opposite directions.
Naturally subscripts and/or superscripts may be omitted
if they are quoted redundantly or if they are of no in-
terest. This is the case in many applications below, where
superscripts are only retained to describe the current
components of the final state, while currents of preceding
states may show up only with their amplitude DF.

II. THE ONE-BOUNDARY PROBLEM

The initial condition of a point source with unit
strength at t =g =0 oriented towards g >0 will be main-
tained throughout this paper; other source configurations
are mentioned explicitly; see also Appendixes A and C.

Introducing an absorbing or reflecting boundary two
alternatives have to be considered: Setting the boundary
at ¢ = —a <0 or at ¢ =u >0, the source would be direct-
ed away from or towards the boundary. In any case the
boundary causes a disturbance which we ascribe to a
secondary source at the site of the boundary. Evidently it
will come into existence only with the arrival of the front
of the undisturbed flux, i.e., for t =a or t =2 u. Further-
more we will require the disturbing flux to meet two (sta-
tionary boundary) conditions: The superposition of dis-
turbing and undisturbed flux must vanish at the ‘“rear
side” of the boundary, while on its “front side” it must
decrease or increase according to the absorbing or
reflecting property of the boundary.

Case (al). Considering an absorbing boundary at
g = —a, the postulates above can be cast into two equa-
tions, describing the flux in the left (right) half space [lhs
(rhs)] off the boundary:

/. (,9)0(—(q +a))—f0+dt>4*(t',—a)
X/ _(t—t',qg +a)O(—(q +a))=0, (3a)
/+(t,90(q +a)—f0‘dt>4*<t',—a)
XL _(t—t',qg+a)O(q +a)=, (t,q,—a). (3b)

r
The two terms in the sums (3a) and (3b) describe the orig-
inal flux (2) and a disturbing flux. The effect of the ab-
sorbing boundary is equivalent to a source with “nega-
tive” amplitude —A(t,—a), ie., a particle sink at
g = —a that emits “missing” particles. As the emission is
directed into the lhs ¢ < —a, as indicated by the super-
script, it entails a flux DF, which is expressed by the dou-
ble convolution integral of the sink —A ~(¢,q9) and the
flux / _(t,q), the mirror image of (2), see (A1).

In the lhs of the boundary the sum of the ‘“negative”
disturbing flux and the “positive” undisturbed flux cancel
(3a), while in the rhs the particles absorbed at the
boundary —it must be those that move to the left and
that hit the boundary at its front side, a postulate that
will be verified by (8)—cause a bleeding of the prevailing
undisturbed flux, thus giving rise to the new distribution
/£ +(t,q,—a) (3b). In (3a) and (3b) the convolution in-
tegral in space is already carried out while Laplace trans-
forms (LT) are used to evaluate the convolution integral
in time:

f+(s5,q)0(—(qg+a))— A" (s,—a)f _ [ (s,q +a)=0,
(4a)

f+(5,9)0(q +a)— A" (s,—a)f _ r(s,q +a)
=f,(s,q,—a). (4b)

f +(s,q) is the Laplace transform of / . (¢,q) given by
fils@r=o-lr"+ot =1 er0(—g)
+(r 4ot +r1)e 7 90(q)]
=f+,L(s,q)+f+’R(s,q)
with o=s+r, 7=(02—rH)2. (5)

Inserting (5) and the mirror image f _(s,q) (A2) into (4a)
furnishes all data—amplitude and orientation—of the
sink

- = —ar s - f+,0(59)
A (s,—a)=k e with £k~ = [ATY)
_r4+o"=7")" _(oc—1) ) (6a)
(r*+o”+77) r
o —ar . _(rto—1)_(0—7)
A(s,—a)=ke with k rfo+7) p ,

(6b)
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which are used in (4b) to evaluate the flux in the rhs
q=—a:

+

_ | lo—7) (o0 —7)*"
f+(S,q, a) f+(S,Q) 27 + 1rr
Xe 41297 19(q +a) . (7
The flux at the boundary
_|rT (=1 | _a
f+ls9, a)!q:'“ 2T 2rt ¢
=k e =4 (s,—a) (8)

has the same amplitude as the assumed sink but a posi-
tive sign and as its PCC vanishes while the NCC is identi-
cal with (6), the flux actually reduces to a current in the
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negative g direction at ¢ =—a. This complies with
Mark’s boundary conditions [10] and proves the identity
of the boundary value A4(s,—a) with the FPTDF
A~ (s,—a), naturally in consideration of the special
configuration for source and boundary, which means that
only particles moving to the left account for it.

Equation (8) agrees with the situation at a medium-
vacuum interface, with the vacuum for g < —a, where
particles having crossed the boundary continue their
flight as a current and never return to the boundary
(compare [9]):

Ng<—a

=—A"(s,—a)e9TO(—(qg +ta)e, (9

is(s,g,—a

where e is the unit vector in the positive g direction.
For the sake of completeness we present the originals
of the LT’s of (6), (7), and (9):

|
I —n t+q
Alt, —a)=Te "0 |1o(6)— I 1,(0) |o (t—lghl,=—,
2 d
=7abs 5; j:(t,q)lqz_ ) 10)
jrltg—a)l, .= fdt N Tdg' AT (1,q")8(q"+a)8 (1 —t'+q —q")O(t —1')e
—— Lo mon) |15 (- 217 () |©(t, —a)O( —(q +a)e
) o \7 t+a 2 \7 1 q
with t,=t +q +a, n=r(t}—a®'?, (1)
172
_ T, -n t—a + 1 —1g
£ (t,qg,—a) l/+tq) e "O(1) " 1] (0) — 12( ) |6 —|d|) {©(gq +a)

We notice that the flux (12) is described by the undis-
turbed flux (2) and a disturbing flux, where the latter is
defined in the domain

D(t,q,—a)=0O(1)0(t —d)O(q +a)

=0O(t —a)O((t —a)—(q +a))O(q +a)

=06(1)0(t—|d|)e(g+a) .

The second alternative expresses explicitly its existence
for ¢t 2 a in agreement with (9), while the third one makes
it look like it is coming from a mirror image source
A(t,—2a) that exists for t =0 at the double distance
g = —2a behind the boundary.

The corresponding survival probability (SP) is given by
the space integral of (7) or (12), leading to the simple ex-
pression

S (s,—a)

=[1—A(s,—a)]/s , (13)

Q9+(t,._a)=9(t)—fotdt’e(z’M(t—t',—a) (14)

with ¢ =qg +2a and 0=r(t>—d »)!?. (12)

r

that verifies plausibly the tight connection with the
FPTDF.

Case (a2). If the boundary at g = —a reflects the parti-
cle, the reflective property of the boundary shall be
marked by a caret placed above the boundary coor-
dinate—Egs. (3a) and (4a) still remain valid, whereas (3b)
and (4b) are replaced by

/. (,9)0(q +a)+ fo’dzumz', —a)/ (t—t',q+a)

XO(g +a)=/(t,g,—@), (30

fi(5,9)0(g+a)+ 4 (s,—a)f , x(s,q +a)

=f,(s,q,—@). (4¢)

The reflecting boundary acts like a particle source with
positive amplitude given by the FPTDF A (¢, —a) orient-
ed towards the rhs off ¢ =—a. Inserting (5) and
A (s, —a) from (6) in (4¢) leads to
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— r*+o"—1" —(g +2a)r
f+(S,q)_a)'— f+(S,q)+ 2 e !
XO(q +a), (15)
+§e_"9(t)
/ L172
+ —a —
X IO (0)+ +a 1 (@)
XO(t—a) (6(q +a) . (16)

For ¢g=—a the PCC and NCC contribute equal
amounts, so the flux (15) or (16) is exactly twice the am-
plitude of the undisturbed flux (5), respectively (2), while
the net current is zero, compare [9]. The corresponding
SP is ©(1).

Cases (bl), (b2). In the same way the flux DF is de-
rived for one absorbing or one reflecting boundary at
g =u>0. In both cases the flux behind the boundary
will disappear according to
/£ (,9)0(q —u)— fo'dt'z+(t',u)/+(t —t',q—u)

XO(g—u)=0, (17a)

which is just Siegert’s formula [1], while the flux DF’s for
J

B(t,u)=e "O(1)[(r’q/0)1,(0)0(t —|q|)+8(t —¢)]|, -,
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q < u are derived from the equations

/+<t,q)e(—(q—u))—fo‘dt'$+(t',u>/+(t~t',q—u)
XO(—(g—u)=f,(t,gu), (17b)

£ (,9)0(—(g —u)+ fo’dt'z;—(t',u)/_(z—t',q—u)
XO(—(g —u))=/ ((t,g,a) . (17¢)

Proceedings as before the LT’s of the FPTDF and the
fluxes are

B(s,u)=e ™ “7, (18)
fi(s,qu)=f(s5,9)0(—(q —u))
—B*(s,u)f+,L(s,q—u)
— __r_+0'+—'r+ (g —2u)T
f1(s,q) Py e
XO(—(g—u)), (19)
fi(s,q,0)=f(5,9)0(—(q —u))
+B (s,u)f_ [(s,q —u)
+ — —
= |filp+—"—2 T to +r e‘q‘z“”]
2T
XO(—(q—u)), (20)

with the corresponding original DF’s of FPTDF and
fluxes

=%abs %/;(z,qnq:u J : @1
/+(t,q,u)=[f+(t,q)—§e‘"e(t) 15 (B)+ ;—t"— mlr(ﬁ) G(t—lﬁI)}G(—(q—u)), 22)
L a i) =1L )+ (1,i)]10(— (g —u))

=[/+(t,q)+e”9(t)l% 1§ (B)+ iJ_”I: I/ZI,_(B)}9(t—|if|)+6(t+ii) o(—(g—u))
with & =¢ —2u and B=r(t?—i )2 . (23)

Again fluxes and currents at ¢ =u can be calculated from
the two last expressions as in the previous cases with the
corresponding SP’s given by

$i(twy=0— [ dr'eu Bt —t'u) (24)

S (6,2)=6(1) . (25)

Equations (10) and (21) in their last versions express
the linear dependence of the FPTDF on the absolute
value of the gradient of that current component in the
undisturbed flux (2) that is directed away from the bound-
ary. As this relation is independent of the source-
boundary configuration it may be a general feature of the
FPTDF, worthwhile for further investigation.

Applying rule [11] to the LT’s (7) and (19) reproduces
the expressions (17) and (18) derived in [5].

III. THE TWO-BOUNDARY PROBLEM

The same procedure can be used to evaluate the flux
DF between two boundaries together with the BV [12] at
either boundary, thereby any combination of reflecting
and absorbing boundaries is possible. Here we derive the
DF between two absorbing boundaries, as for this case
the result can be cross-checked with its counterpart un-
der stationary conditions.

Starting with the same initial conditions for source and
boundaries as before [cases (al) and (a2)] we split the
original flux coming from the particle source in two one-
sided branches and follow up the development of each
flux branch in accordance with the successive encounters
with the boundaries.

The flux branch propagating in the negative g direction



3992 HANS J. LEYDOLT 47

hits the absorbing boundary at ¢ = —a first. The absorp-
tion gives rise to a primary disturbance that makes the
flux vanish for ¢ < —a, (26a), while it spreads for ¢ = —a
towards the opposite boundary g =u, (26b). For
t = 2a +u this boundary gives rise to a secondary distur-
bance (a disturbance of the disturbance) that makes the
primary disturbance vanish for g > u, (27a), while it prop-
agates for ¢ =u back to the other boundary at ¢ = —a,
(27b). With its arrival at t =3a +2u a third-order distur-
bance develops, cancelling the secondary disturbance for
g < —a, (28a), and spreading on the other side again to-
wards ¢ =u, (28b), and so forth:

f+.0(5,9)0(—(g+a))— Ay f_ (s,q +a)=0, (26a)
fi.0(5,9)0(g +a)—K e f_ p(s,q +a)
=f+.1(s,9,—a), (26b)

— Ay f- r(s,qg +a)O(q —u)+A;f+,R(s9q —u)=0,
(27a)
—K e f_ r(s,qg +a)O(—(q —u))
+K2+euff+’L(s,q

—u)=f4,(s,q,u), (27b)

ASf 4 L(s,g —w)O(—(g+a)— A7 f_ 1 (5, +a)=0,

(28a)
K** e f, 1(5,q—u)O(q+a)—K3"e""f _ p(s,q +a)
=f4,(s,q,—a), (28b)
— A3 f_r(s,9 +a)Olg —u)+ A f g(s,g —u)=0,
(29a)
—K*7e"f_ p(s,q +a)O(—(g —u))
+K* e f L 1 (s,q —u)=f 4(s,q,u) . (29b)

fi(s,q,—a,u)= M

Equations (26a) and (26b) are quasi-identical with (4a)
and (4b); — A, =—A(s,—a), + A, =+ A,(s,u),— 4,
= — A,(s,—a), ... stand for the sinks and sources (the
latter have to be interpreted as sinks of missing particles)
at the boundaries that come into existence successively as
indicated by their indexes. In every second equation

— Ay, Ay,— Ay, ... is replaced by its explicit
value —Ke“",+KZ2e%",—K3*",... with K =ke,
e=e 977 obtained from the previous equation.

The other positive branch of the original flux en-
counters the boundaries in the reverse order
q=u,—a,u,...; they give rise to the sinks (sources)
—B,=—B(s,u),+B,=+B,(s,—a),... and to distur-
bances in the flux distribution, described by (30a)—(32b)
and so forth:

f+,r(s,9)0(g _“)—BFLer,R(s,q —u)=0, (30a)
f+r(59)0(—(g—u))—1%e f (5,9 —u)
=f1,1(squ), (30b)

—Bl+f+,L(s,q —u)O(—(q+a))+B, f_ ;(s,q +a)

=0, (3la)

—1%e™7f, (5,9 —u)O(q +a)

tK e f_gr(s,g+a)=f, ,(s,q,—a), (31b)
By f_r(s,q +a)©(g —u)—B3 f, p(s,g —u)=0, (32a)
K e ™™ f_ pls,g +a)O(—(q —u))

_K2+€_u’rf+,L(S,q —-u)=f+,3(s,q,u) . (32b)

The two original flux branches plus the infinite sum of all
their follow-up disturbances contribute to the time-

dependent flux DF within and at the boundaries, see Ap-
pendix B:

L{(1—e—2”)[k*e*2“(r++a——r‘ e IT—1%(r "+ot —7")e"10(—q)O(q +a)

+(kPe T —1)[1Te 2 (r " +ot =)t 1 (r T +ot +11)e TI710(9)O(— (g —u))} ,

(33)
. k—e—a‘r(l_e~2u‘r)
filsg—au)l,= = "
&, _ 4~ (1—B?
=k§o(A2k+l—B2k+2)=_———(1—A2B2) ) (34a)
. 1+e—ur(1_k2e—201')
fils,g,—au)l =, = "
© B+(1_A2)
:kgo(th(,H—A;H_z):m , (34b)

where A4 and B are identical with the expressions (6) and (18).

Again we can derive the SP either from the space integral of (33) or from the FPTDF’s (34a) and (34b) in analogy to

(13) and (14) or (24):
PRI EVES VIEPT I

(35)
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S (t,—a,u)=06(t)— tdt’e(t’)[/+(t—t’,q,—a,u)| gt t—tg,—a,u)l,-,]. (36)
0 q q

For the special case of a symmetric unit source, see rule [11], with the boundaries at ¢ = *a the flux DF is symmetric

in g,

_ Utk
47(1+ke 2e7)
f(5,4,=a,0) =2, =1"(1+k)e "7 /2(1+ ke "27)

fr(s,q,—a,a)=

(r4+ot+7rH)e 97— 27 (r +o+ —77)e?10(q)O(— (g —a)) , (37)

(38)

where the denominator in (37) and (38) refers to a series of equidistant (At =2a) alternating steps in the original. Con-
sequently the latter can be expressed only implicitly by means of a convolution integral, e.g., for (38)

L ’ ' ’ roo—n ’ t'— ’ ’
Jlav /et~ a,a)l g 1,00 [8(6)+ S e 10(6)—7;—;112(9) ot —q)lqzhl
=le "O(1) {8+(t~q)+§ %‘1 IT(9)+IJ(9)—§I31;(9) eu—z)} with @'=r(t"2—g?)/? |
g=a

which in turn can be expressed by FPTDF’s such as (10)
and (21),

fotdt'f(t*t',q,—a,a)|q:+,,[8(t')+o4(t’~2a)]

=B (t,a)+AT(t,—a). (39b)

For simplicity the presentation of the originals of (33),
(34), and (37) is omitted as it would involve convolution
integrals similar to the one in (39).

Three more DF’s together with their BV’s for various
combinations of absorbing and reflecting boundaries are
listed in Appendix C.

Proof. In order to confirm the results above we present
a proof with its main steps. It is easily shown that (2) is
the forced response solution of

a_ | &
2 Y
3 +r] r e fi(t,q)

ot - 0"
Y +r+r 3

8(1)d(q) , (40

where according to the superscripts the terms in the
differential operator on the rhs of (40) give rise to the two
current components in (2) and (5). This one-to-one
correspondence permits the derivation of fluxes, currents,
and current components, etc. straight from the TE, re-
spectively, its Green’s function by choosing the appropri-
ate differential operator on the rhs of (40). For example,
rule [11] provides for the solution of (1) for a symmetric
source with unit strength at ¢ =¢q =0; similarly it can be
derived from the TE (40) augmented by its mirror image.
Likewise all DF’s deduced from the RW model are solu-
tions of the TE, irrespective of the presence or absence of
fully or partially absorbing and/or reflecting boundaries,
subject to any kind of source emission (one-sided, non-
symmetric, or symmetric).

If the RW is extended to include forward and back-
ward scattering (with equal rate ») and absorption as well
(with the rate a, which corresponds to a trapping rate),
only r out of (a+2r) collision events entail a backscatter-

(39a)

[

ing. This leads to modifications in the TE’s: 93/9¢
—0/0t+a; the distributions: exp(—rt)—exp[—(a
+7r)t]; and the corresponding LT’s: s —s +a. Introduc-
ing the new parameters X,=a/c, X,=2r/c [13],
1/D=3,=3,+2 =(a+2r)/c, where 2,, 2, and =X,
denote the macroscopic absorption, scattering, and trans-
port cross section and D the diffusion coefficient, and as-
suming a symmetric unit source at t =x =0 the TE reads
in spatial representation

1 32 113 , 2 @
2 8t2+ 2a+D cat+ D 2 /£ (ct,x)
d 1
= cat+D 8(ct)8(x) . (41)

The stationary solution of (41) with absorbing boundaries
at x =*tais

e ~K\xk_e —2x(a +d)eK|x|
2kD(1+e —2k(a +d))

£ (x,—a,a)=

— za 172 ’
with k= -—D—— (42)

[14], where d is the extrapolation distance defined by

_V/(x,—a,a)
£(x,—a,a)

At the extrapolated boundary the flux (42) vanishes:
£ (x =a+d,—a,a)=0. As the flux at the boundary ac-
tually reduces to a current and as Fick’s law ought to be
valid there as well, (43a) can be written as

(43a)

1_
d

X =a

1__ vV

_ (x,—a,a)

D 7 (x,—a,a) ’ @30

x=a

which implies d =D (correct in 1D space). Inserting (42)
in (43b) gives

(1—kD)/(1+kD)=e ~2%¢ (44)
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Referring to (37) for g >0, including absorption, taking
the stationary limit s —0, and changing to spatial repre-
sentation with the new parameters

e -—Kx__Ee *ZKaer

,—a,a)= 0(x)0(—(x —

£ r(x,—a,a) 2D (14 Fe ) (x)O(—(x —a))
. _ (1—«D)
w1thE————————(1+KD). (45)

Comparison of (45) and (42) confirms (44) straightaway.

Note added. After completion of this paper I got to
know about the work [15], in which the expressions for
two FPTDF’s (one-boundary problem with absorbing
boundary) were presented as well. Different expressions
were obtained for a source directed away from the
boundary, Eq. (10) in this paper, (18) in [15].

APPENDIX A

Analogous to (2a) and (5) the flux PDF and its LT sub-
sequent to a source oriented in the opposite (g <0) direc-
tion is given by
J
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£ _(t,g)=e "O(t) {8 (t +q)
‘ 172
s+ -9 —
+ |15 (0)+ P 7(6)
Xe(t—lq|)] , (A1)

fv(s,q)=%T[(r++a_+r‘)e‘”6(——q)
+(rt+o"—717)e 90(q)]

=f_(sq)+f_ r(s,q). (A2)

APPENDIX B

In (26a)—(29b) and (30a)—(32b) the portions of the DF’s
lying within the interval —a <gq <u, i.e., all first terms in
the equations with “b” in the equation numbers, give to
two terms plus four infinite series with the sum

f+(s,q, —a,u)=L[M+(r_+cr‘“—7'+ e O(—g)+K* e (r +ot—rT)eld )"

2™

—K e (r"+o =1 )e Ut MT(r "+t +71)e "770(q)

_K—-e—u‘r(r++o.—_7_~ )e—(q+a)‘r+1+e—ur(r—+o.+___,r+)e(q—u)f]e*

Rearranging (B1) as a sum of two one-sided DF’s
1

with ©*=06(qg +a)0(—(g —u)) and M =1—K? . (Bl)

=——([M "+t =1 )" +k*(r +ot—7 etk e (rt+o T —77)e "

2™

—Ite 2 (r +ot =7 )t +k TeNrT+o T —77)e 9"]0(—q)O(q +a)

+IMYr ot +HrT)e T —1te 2 (r ot —7 e+ kTN r T o T — 1 Je 97

+k* e rtot—1)e—k e P (rt 40" —17)e T710O(¢)O(— (g —u))}

with M=1—k?%?*, (B2)

inserting for M and using the relation (r " +o0~ —77 )=k *(r “+0* +77), derived from the mirror image equation of
(4a) in the eighth term of (B2), as well as (r ~+o " —71)=k ~(r*+0 ™ +r ) from (6) in the first and fourth terms leads
to (33).

APPENDIX C
With the source configuration leading to (2a) the LT’s of the flux DF’s within and at the boundaries, i.e., for one ab-
sorbing and one reflecting, respectively, for two reflecting boundaries become
f—+— (srqa —aya)
1

=2—TNW‘ +e N1 (rt+o T —1 ) —kTe W (r +ot+7T)e I7]O(—q)O(g +a)

+(1—k2 21 (r +ot+r)e T"+1 e 2 (rt+o " +77)ei710(9)O(— (g —u))}
with N=1+ke*, (Cl)

(C2a)
(C2b)

felsg,—a,i)|,-_,=1"e %k +e *)/N ,

fi(s,g,—a, i), =, =e " (1—k*2I)[(r +ot+r)+(r +o " +77)]/27N
f+(s,q, —'a,u)=5:ﬁ{(1—9_2”)[1+(r_+0+—'r+ e?™+kte 2 (r~+ot+71)e T97]O(—¢q)O(q +a)
+(1+ke )17 (r o +rT)e "—1re 2 (r T +ot+77)ei"1O(q)O(— (g —u))} , (C3)
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f+(s,q,—ﬁ,u)|q=_a=ke*'”(1—e_2'”)[(r_+a++7'+)+(r++0_+‘r_)]/27'N ) (C4a)
fils,q,—a,u)l,-,=1Te “(1+ke *")/N , (C4b)
fils,q,—a,0)= 2iL {((k+e 2N[1 (rT+o +7 )e?+1 e 2 (r +o"+7")e 17]0(—q)O(q +a) (C4c)
+(1+ke 221 r +oT+7T)e I+ e B (rT+0 T +77)e9710(9)0(— (g —u))}
with L=1—¢€?, (C5)
fils,g—=a,0)|,—_,=e “(k+e (" +o "+ )+(r T+~ +77)]/27L , (C6a)
fils,g—a,0)|,=,=e “(I+ke > N[(r " +ot+r")+(rT+o™+77)]/27L . (C6b)
For a symmetric source and two reflecting boundaries at g =*ta
fR(s,q,—a,a)=%[(r_+o++’r+ e =T+e "2 (rF +0 +17)edT10(Q)O(—(g —a)) , o)
T{1—¢
fls,q,—8,@)| -, =(1+Kke [(r"+ot+77)+(rT+o ™ +77)]/4r(1—e 727) . (C8)
As in (39a) the original can be expressed only by a convolution integral:
fotdt'/(t—t’,q,—ﬁ,a)lq=ia{S(t')—e_"'G(t’)[ﬁ(t'—q)+(r2q/9')11(0')6(t’—q)]|q=2,,}
=e "O(1){8(t —q)+r[Iy(0)+(rt/0)I,(0)]0(t —g)}|,—, (C9a)
or in other terms
fotdt’/(t—t’,q,—ﬁ,ﬁ)|q=ia[8(t')—j8(t',2a)]= %-l—Zr [e "O(1)1,(0)0(t —q)]l,—, - (C9b)
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